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ABSTRACT: Selective CDK2 inhibitors have the potential to
provide effective therapeutics for CDK2-dependent cancers and for
combating drug resistance due to high cyclin E1 (CCNE1)
expression intrinsically or CCNE1 amplification induced by
treatment of CDK4/6 inhibitors. Generative models that take
advantage of deep learning are being increasingly integrated into
early drug discovery for hit identification and lead optimization.
Here we report the discovery of a highly potent and selective
macrocyclic CDK2 inhibitor QR-6401 (23) accelerated by the
application of generative models and structure-based drug design
(SBDD). QR-6401 (23) demonstrated robust antitumor efficacy in
an OVCAR3 ovarian cancer xenograft model via oral admin-
istration.
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The Cyclin-dependent Kinases (CDKs) are a family of
serine-threonine kinases which exert their biological

functions by interacting with their corresponding cyclin
partners.1 Deregulation of the CDK-cyclin complex’s activity
results in the loss of cell cycle and transcription control in
tumor cells.2 CDK inhibitors have been pursued by scientists
in the pharmaceutical industry for nearly three decades but
with limited success. To date only selective dual CDK4/6
inhibitors have been approved for cancer patients, and more
selective inhibitors targeting other isoforms of the CDK family
are needed.3,4 The other important CDK isoform that
phosphorylates retinoblastoma (Rb) to release E2 transcription
factors (E2Fs) in sequence with CDK4/6 is CDK2. CDK2
drives G1/S progression with its canonical binding partner
cyclin E1 (CCNE1) whose amplification has been observed in
many cancer types and correlates with poorer overall survival
rate in breast, ovarian, and other cancer patients.5,6 Addition-
ally, selective CDK2 inhibitors have the potential to benefit
cancer patients who have suffered drug resistances to CDK4/6
inhibitor treatments due to cyclin E1 amplification.7 So far
only a limited number of selective CDK2 inhibitors are active
in clinical trials8 (Figure 1). After having identified and
advanced our next-generation selective CDK2/4/6 inhibitor
RGT-419B into development for phase I clinical trial, we

initiated an AI-integrated campaign to discover selective CDK2
inhibitors.

Artificial intelligence (AI) in small molecule drug discovery
has gained increasing momentum in the past few years.9,10 The
usefulness of AI in drug discovery is demonstrated with several
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Figure 1. Selected CDK2 inhibitors currently in clinical trials.
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AI-enabled drug candidates advancing into clinical develop-
ment.11 Generally, in order to identify hits with structural
novelty and potency, four main types of molecule generation
methods are commonly used: scaffold (or fragment) hopping,
fragment merging, fragment growing, and fragment linking.12

Each of these methods can be realized through the simplified
molecular input line entry system (SMILES) based or graph
based generative models13,14 with the advancements in both
algorithm and computing capacity. Recently, we and others
have successfully developed generative models for fragment
hopping15,16 and fragment growing.17−21 Very interestingly,
new generative algorithms have demonstrated their capabilities
in linking fragments together to form fully elaborated
molecules.22−27

Macrocycles have emerged successfully as a robust class of
modality in small molecule drug discovery.28,29 Increasing
numbers of rationally designed macrocycles by chemists have
progressed into clinical trials, and several macrocyclic
inhibitors of kinases ALK/ROS130 and JAK2/FLT331 have
been approved as cancer treatments. Conceptually, one can
imagine that the fragment linking strategy in FBDD can also be
applied intramolecularly to form a macrocyclic molecule from
the corresponding linear precursor. Rule-based computational
models have been reported for macrocycles construction.32 AI-
based intermolecular linker design algorithms have been
published,22−27 but they cannot be directly applied intra-
molecularly for macrocycle generation. Pioneering research
using AI method to design macrocyclic peptides with much
improved permeability has been published by the Baker group
very recently.33 Despite these initial successes and the great
potential of this new class of modality, currently no AI
algorithms are publicly available for designing such types of
molecules with experimental validation in real world drug
discovery. Herein we report the AI-accelerated identification of
a potent, selective, and orally bioavailable macrocyclic CDK2
inhibitor QR-6401 (23).

At the outset of the project, we surveyed the literature and
selected 10 representative chemotypes of published CDK2-
related inhibitors as possible starting points for us to identify
CDK2 inhibitors (Table S1). At the same time a Fragment-
Based Variational Auto-Encoder generative model (FBVAE,
whose algorithm is to be published elsewhere) was developed
to perform fragment hopping of selected starting points.
Finally, the essential hinge binding elements of the reference
compounds were replaced and a library of 3220 molecules was
generated. The inhibitors were filtered through glide docking
and visual selection, and finally 10 compounds were prioritized.
Some modifications on the generated structures were made for
ease of synthesis. These FBVAE-derived analogues were
assayed for CDK1/2 inhibitory activities and the results are
summarized in Table 1 (Compounds 1−10).

CDK2 inhibitory activities for the synthesized compounds
varied widely. While most of them exhibited significantly
reduced potencies when compared with their parent molecules
(Table S1), compound 10 displayed single digit nanomolar
activity with 25-fold CDK1 selectivity. Subsequent SAR
exploration around compound 10 was carried out, and we
observed that CDK1 selectivity was difficult to improve further
and the compounds of the series were cleared rapidly in liver
microsomes. On the basis of the early results, we decided to
shift our attention toward the fragment replacement of
aminopyrazole type of CDK2 inhibitor (Figure 1). Three
compounds were selected and synthesized from the 492

generated molecules, and their CDK1/2 inhibitory activities
were listed in Table 1 (Compounds 11−13). Overall,

Table 1. Structures and Biological Activities of Novel
Compounds Generated by FBVAE
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compound 13 showed better CDK2 activity in enzyme assay
and better CDK1 selectivity than compounds 11 and 12.

In order to gain structural insights for macrocyclic CDK2
inhibitors design, we solved the cocrystal structure of
compound 13 with CDK2/Cyclin E1 at 3.0 Å resolution. As
illustrated in Figure 2, the aminopyrazole moiety of compound

13 formed the canonical hydrogen bonds with the NH and
carbonyl of Leu83 and additional hydrogen bond to backbone
carbonyl of Glu81, respectively. The cis-oriented cyclopentyl
ring was engaged in van der Waals interactions with the side
chain phenyl of gatekeeper residue Phe80. The cocrystal
structure also suggested that the carbonyl oxygen from the
carbamate motif served as a hydrogen bond acceptor for the
side chain amino group of Lys33, while the NH of the
carbamate was involved in a hydrogen bond with the side chain
carboxyl group of Asp145. The pyridine ring of compound 13
pointed to the solvent-exposed area and showed no obvious
polar or nonpolar interactions with the CDK2 protein. Overall,
compound 13 adopted a U-shaped binding mode with the 6-

position carbon of the pyridine ring and the nitrogen atom of
the carbamate motif facing each other. The through-space
distance between the two atoms is measured at 5.2 Å,
providing rational connecting points for macrocyclization.

A three-step macrocycle generation workflow was envisioned
as shown in Figure 3. First, a given starting linear molecule
decorated with two preferred attachment points was taken as
an input. Then the linkers with preset lengths and chemotypes
were generated by MacroTransformer. Finally, they were
installed onto the linear molecule by RDKit (an open-source
toolkit for cheminformatics) to form a complete macrocycle.
MacroTransformer is a novel generative model that was
developed for the generation of macrocycles from linear
precursors based on the Transformer architecture.34,35 Known
macrocyclic molecules were too few for model training. Thus,
acyclic molecules from ChEMBL database were used as
training data for data augmentation based on the assumption
that a linker fragment could be sliced from an acyclic molecule.
The data from the ChEMBL database was filtered by Lipinski’s
Rules of Five, leaving 456,000 data points. Then the MMPs
(matched molecular pairs) algorithm36 was employed to
fragmentize molecules into terminal fragments and linker
fragments with 2−15 atoms in length. After removing the
duplicated linker fragments, a data set of 123,879 < terminal
fragment, linker fragment> pairs were obtained and divided
into training set, validation set, and test set by the ratio of
8:1:1. The generative model was trained and evaluated using
the ChEMBL data set prepared above. The validity, unique-
ness, and novelty of the linkers37 generated by MacroTrans-
former were 92%, 84%, and 71%, respectively, indicating that
the linkers generated by the model were both valid and novel.

The model was applied to the CDK2 macrocyclic inhibitor
design. The preliminary SAR study of the linker length on
compound 13 was carried out by medicinal chemists using
structure-based drug design. We therefore confined the linker
to 4−6 atoms but the chemical nature of the linker was not
fixed. The connecting points of the linker were fixed to the 6-
position carbon of the pyridine ring and the nitrogen atom of

Figure 2. (A) Binding poses of compound 13 with CDK2/Cyclin E1
(PDB: 8H6T). Hydrogen bonds to the backbone atoms of the hinge
region are depicted with yellow dashes. (B) 2Fo-Fc electron density
map contoured at 1 sigma around the compound in gray mesh.

Figure 3. Macrocycle generation pipeline and model construction.
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the carbamate motif in compound 13. With these being set,
compound 13 with two preferred attachment points was used
as the starting linear molecule and a total of 7626 macrocycles
were generated by MacroTransformer. Then, a field-point
score screening38,39 was performed to check the remaining
7092 compounds to make sure the compounds were in similar
3D pharmacophore with compound 13, and this process
resulted in 978 compounds whose field-point scores were
higher than 0.65. Next, glide docking was carried out based on
the grid of compound 13 to give 792 compounds of 30 clusters
from which medicinal chemists conducted final visual
examination. Taking into consideration of structural novelty,
drug-likeness, and macrocycle synthesis feasibility, 10 macro-
cycles were selected and synthesized. The CDK1/2 enzymatic

and cellular activities as well as their ADME properties were
profiled and summarized in Table 2.

As demonstrated in Table 2, macrocycles with different
kinds of linkers generally exhibited 10-fold potency improve-
ment against CDK2 than the acyclic molecule compound 13
except for compound 20. Especially noteworthy was that
compounds 14, 19, 21, and 22 displayed extremely potent
subnanomolar CDK2 activities and a single-digit nanomolar
antiproliferation effect in ovarian cancer OVCAR3 cells.
However, the selectivity against CDK1 varied greatly among
the macrocycles, and only analogue 19 exhibited CDK1
selectivity comparable to the starting molecule 13. The
impressive CDK1 selectivity of compound 19 inspired us to
obtain its cocrystal structure with CDK2/Cyclin E1, which was

Table 2. Macrocycles Generated by MacroTransformer and Their Biological Activities and Some ADME Properties
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solved at 2.4 Å resolution (Figure 4). The water-mediated
hydrogen bond interactions in compound 19 with CDK2/

Cyclin E1 became clearer than those of compound 13 with
CDK2/Cyclin E1. The observed binding conformation of
compound 19 is in excellent agreement with one of the two
computationally calculated minimum conformations (Figure 4
vs Figure S1). Meanwhile, the corresponding acyclic
compound 24 was also prepared, tested, and showed much
lower CDK2 potency. These results highlighted the
importance of the rigid amide linker to lock it into the
bioactive binding conformation thus preorganizing the
molecule for CDK2 binding with high affinity. In addition,
we tested kinome selectivity of compound 19 in a panel of 330
kinases at 0.1 μM concentration. Compound 19 mainly
affected CDK and GSK kinases of CMGC family, otherwise it
is a quite selective kinase inhibitor (Figure S2).

However, compound 19 suffered from relatively poor
permeability and high efflux as measured in MDCK cell lines
transfected with human MDR1 (Table 2). More linker
optimization of compound 16 was carried out by medicinal
chemists on the assumption that reducing total polar surface
areas of the linker may maintain potency, selectivity,
microsomal stability, and improve permeability at the same
time. Eventually QR-6401 (23) with a trans-cyclobutyl ring as
a main part of the linker was identified and achieved the same
range potency against CDK2 and OVCAR3 cells with
improved human liver microsomal stability and permeability
(Table 2). Additionally, this molecule exhibited good
selectivity against other closely related kinases, such as
CDK1, CDK4, CDK6, CDK9 and GSK3β (Table 3).
Furthermore, QR-6401 (23) demonstrated good intrinsic
metabolic stability and acceptable plasma protein binding in
different species (Table 3). The rat and mouse pharmacoki-
netics studies were conducted, and data were summarized in

Table S2 and Table S3. QR-6401 (23) was cleared rapidly in
SD rat with moderate volume distribution and achieved 50%
oral bioavailability at 5 mg/kg. In female Balb/c nude mice,
QR-6401 (23) displayed superproportional increase of AUC
from 758 to 5587 h·ng/mL following PO dose at 20 and 100
mg/kg, presumably due to a certain level of saturation of
clearance.

On the basis of the overall potency, selectivity, ADME and
PK profile of QR-6401 (23), it was advanced into in vivo
antitumor efficacy study in OVCAR3 ovarian cancer xenograft
model. Tumor-bearing mice were dosed with QR-6401 (23)
twice daily through oral gavage at 50 mg/kg for 28 days. Free
plasma concentrations at this dose allowed about 12 h
coverage over the cellular IC50 of QR-6401 (23) (Figure
S5). Treatment with QR-6401 (23) caused significant tumor
growth inhibition (TGI% = 78%, Figure 5A) in the OVCAR3
xenograft model. QR-6401 (23) was well tolerated, and no
apparent body weight loss was observed when compared to the
vehicle group (Figure 5B). To elucidate the mechanism of
antitumor activity, we examined the pharmacodynamic
response to QR-6401 (23) treatment in the OVCAR3 ovarian
cancer xenografts model. QR-6401 (23) was administered
twice daily via oral gavage at 50 mg/kg to OVCAR3 tumor-
bearing mice with 6 h apart between AM and PM dosing time.
Tumors were collected at defined time points 3 days post
treatment and the levels of retinoblastoma (Rb) phosphor-
ylation at serine 807/811 were determined. QR-6401 (23)
produced robust suppression of Rb phosphorylation, and 80%,
69% and 73% inhibition were observed at 2, 4, and 7 h post
first dose at day 3, respectively, when compared to the vehicle
control (Figure 5C and 5D). Free plasma concentrations at 2,
4, and 7 h were 33, 20, and 51 nM, respectively (Figure 5D).

In summary, we report herein the accelerated discovery of a
potent, selective, and orally bioavailable macrocyclic CDK2
inhibitor QR-6401 (23). During our effort, new AI methods of
generative models were developed, evaluated, and deeply
integrated into hit identification and lead optimization stages.
At the early stage of the project, the scaffold hopping model
FBVAE was used to produce a novel and proprietary lead
CDK2 compound 10 from publicly disclosed CDK inhibitors
for further optimization. Then a macrocyclization strategy was
envisioned on the basis of the cocrystal structure of compound
13 with CDK2/Cyclin E1. And at the lead optimization stage,
the macrocycle generative model MacroTransformer was
developed and utilized in the linker design. The AI model
generated extremely potent CDK2 macrocyclic inhibitors with
excellent CDK1 selectivity. However, it is important to point
out that these molecules were also conceived by our internal
chemist. In fairness, the model performed well if not better
than human intelligence in our case. Perhaps more
importantly, QR-6401 (23) was not produced by the
MacroTransformer model but by our experienced chemists,
highlighting the notion that AI generative models in general
and MacroTransformer in particular are still in early develop-
ment stages. Possible future directions for algorithm evolution
are to expand structural diversity with more chemotypes and

Figure 4. (A) Binding poses of compound 19 with CDK2/Cyclin E1
(PDB: 8H6P). Hydrogen bonds to the backbone atoms of the hinge
region are depicted with yellow dashes. W1 and W2 represent the two
water molecules involved in mediating H-bond networks between
compound 19 and CDK2. (B) 2Fo-Fc electron density map
contoured at 1 sigma around the compound in gray mesh.

Table 3. In Vitro Profile of QR-6401 (23)

Biochemical activity IC50 (nM)
Plasma protein binding in 100%

plasma
Liver microsomal stability

T1/2 (min)

CDK1/A2 CDK2/E1 CDK4/D1 CDK6/D3 CDK9/T1 GSK3β mouse rat human mouse rat dog
22 0.37 45 34 10 5.5 79% 70% 99% 68 150 100
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take 3-dimensional structural information on linkers and target
proteins into consideration. In this project, generative model
engineers, computational chemists and medicinal chemists
worked seamlessly together and inspired each other in new
inhibitor design and optimization, which greatly accelerated
the discovery process and resulted in the identification of an
advanced lead macrocycle QR-6401 (23).
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